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Abstract. The following work presents a self-regulating filter that is
capable of performing accurate upsampling of dynamic point cloud data
sequences captured using wide-baseline multi-view camera setups. This is
achieved by using two-way temporal projection of edge-aware upsampled
point clouds while imposing coherence and noise filtering via a windowed,
self-regulating noise filter. We use a state of the art Spatio-Temporal
Edge-Aware scene flow estimation to accurately model the motion of
points across a sequence and then, leveraging the spatio-temporal incon-
sistency of unstructured noise, we perform a weighted Hausdorff distance-
based noise filter over a given window. Our results demonstrate that this
approach produces temporally coherent, upsampled point clouds while
mitigating both additive and unstructured noise. In addition to filtering
noise, the algorithm is able to greatly reduce intermittent loss of perti-
nent geometry. The system performs well in dynamic real world scenarios
with both stationary and non-stationary cameras as well as synthetically
rendered environments for baseline study.

Keywords: Point clouds · Upsampling · Temporal coherence · Free
viewpoint video · Multiview video · Volumetric video

1 Spatio-Temporal Coherence in Volumetric Video

As the popularity of VR and AR consumer devices continues to grow, we can
naturally expect an increase in the demand for engaging and aesthetic mixed
reality content. The barrier to entry for creative enthusiasts and content creators
has begun to decline as more digital frameworks supporting VR/AR become
available, however, performance capture and reconstruction of real-world scenes
still remains largely out of reach for amateur productions.
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Using Free-Viewpoint Video (FVV) or, more specifically Volumetric Video
(VV), content creators have the technology to record and reconstruct per-
formances in dynamic real-world scenarios. However, these captures are often
restricted by the constraints of highly controlled studio environments, requiring
dense arrays of high-resolution RGB cameras and IR depth sensors [5,20]. The
reconstruction is usually done in a frame-by-frame manner beginning with the
construction of a dense point cloud via Multi-View Stereo (MVS). For such high-
budget studios with very dense coverage of the subject, temporal inconsistencies
in the resulting point cloud may be visually negligible after the final mesh-
ing and tracking process. Yet where low-budget content creation is concerned,
such high density coverage may not be achievable and thus any spatio-temporal
inconsistencies can become magnified and visually unappealing by the end of the
reconstruction pipeline.

In order to address to the demand for low-cost VV and performance capture,
new systems have been proposed which enable VV content creation solely on
consumer-grade RGB cameras and even hand-held personal devices [30]. How-
ever, any such system which features framewise reconstruction [27] will contain
spatio-temporal artifacts in the resulting volumetric sequence. This is usually
a consequence of some inherent fail cases for photogrammetry-based techniques
whereby the subject can contain highly reflective surfaces or a lack of textured
material.

Without accounting for spatio-temporal variance, otherwise pertinent geo-
metric features become distorted and inconsistent across VV sequences. This is
especially true in the case of small or thin details such as hands or arms. An
example of which can be seen in Fig. 1 where the naive frame-by-frame recon-
struction fails to distinguish temporally persistent features as portions of limbs
lack persistence. Furthermore large sections of geometry in relatively untextured
areas may be intermittently present depending on the success of the point cloud
reconstruction for that given frame. Structured noise patches can also be inter-
mittently observed.

The proposed system is an expansion to the work presented in [24] that is
able to spatio-temporally upsample a point cloud sequence captured via wide-
baseline multi-view setups and further support the self-regulating noise filter
metric using a new windowed approach to sampling. In summary, the following
work proposes:

– A spatio-temporally coherent point cloud sequence upsampling algorithm that
selectively merges point cloud projections within a variable window. The pro-
jections of which are computed iteratively using a pseudo-scene flow estimate.

– An autonomously regulated noise filter supported by a density-weighted
energy term for averaging within a window of frames.

We perform a baseline comparison on the work presented in [24] as well as
previous examples.
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2 Previous Work

One of the fundamental processes in modern VV pipelines is spatio-temporal
consistency. Ensuring this consistency across the sequence of 3D models helps
reduce the impact of small geometry differences among frames and surface arti-
facts, which result in temporal flickering when rendering the VV sequence. Most
techniques apply a variation of on the non-rigid ICP algorithm [19,38], such as
the coherent drift point method [29], performing a geometric temporal constraint
to align the meshes resulting from the 3D reconstruction process on a frame-by-
frame basis [14,17]. This works specially well when the 3D models acquired for
every frame are detailed and accurate, as registration algorithms are not always
robust to big geometry differences or loss of portions of the mesh (something
that can often happen for human limbs). A good example of this is the sys-
tem by Collet et al. [5]: they apply mesh tracking in the final processing stage,
both to provide a smoother VV sequence and also to improve data storage effi-
ciency as, between keyframes, only the vertex positions vary while face indices
and texture coordinates remain the same. They achieve very appealing results
by utilizing a sophisticated, very dense camera setup of over 100 sensors (RGB
and IR), ensuring a high degree of accuracy for the reconstructed point clouds
on a frame-to-frame basis. This type of temporal consistency is also key in the
methods proposed by Dou et al. [7,8], where they are able to perform registra-
tion in real-time, using data coming from depth sensors. These methods ensure
temporal consistency at the end of their pipeline, but differently to the method
proposed, they do not address the loss of geometry in the capture stage, which
can only be solved using temporal coherence at the point cloud generation.

Fig. 1. Input dense point clouds generated using an affordable volumetric video cap-
turing platform [30]. Even after densification via multi-view stereo, the input clouds
still exhibit large gaps in structure as well as patches of noise.
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Mustafa et al. [25] ensure temporal consistency of their VV sequences by first,
using sparse temporal dynamic feature tracking as an initial stage, followed by
a shape constraint based on geodesic star convexity for the dense model. These
temporal features are used to initialize a constraint which refines the alpha masks
used in visual-hull carving and are not directly applied to the input point cloud.
The accuracy of their results is not comparable with the methods mentioned
above, but they show good performance with a reduced number of viewpoints
and wide baseline. Mustafa et al. extended their work to include sequences that
are not only temporally but also semantically coherent [26], and even light-field
video [28].

An interesting way of pursuing spatio-temporal consistency is by using opti-
cal flow. For example, Prada et al. [31] use mesh-based optical flow for adjusting
the tracking drift when generating texture atlases for the VV sequence, adding
an extra layer of spatio-temporal consistency at the texturing step. It is possi-
ble to address temporal coherence by trying to use the scene flow to recover
not only motion, but also depth. Examples of this are the works by Basha
et al. [2] and Wedel et al. [35]. These techniques require a very dense and accu-
rate motion estimation for every pixel to acquire accurate depth maps, together
with a camera setup with a very narrow baseline. Alternatively, our system uses
the temporally consistent flow proposed by Lang et al. [18] applied to multi-view
sequences, allowing us to track dense point clouds across the sequence even with
a wide baseline cameras configurations.

Other ways of improving incomplete 3D reconstructions, such as the ones
acquired with wide baseline camera setups, include upsampling or densify-
ing [15,36,37] them in a spatially coherent way. These systems are designed
to perform upsampling for a single input point cloud, and not specifically a VV
sequence, so they are unable to leverage any of the temporal information within
a given sequence of point clouds. As a result, the use of such techniques alone
will still suffer from temporally incoherent errors. Our system takes advantage of
the geometric accuracy of the state of the art Edge-Aware Point Set Resampling
technique proposed by Huang et al. [15] and supports it using the temporal infor-
mation obtained from the inferred 3D scene flow along with some spatio-temporal
noise filtering. The reasoning behind this approach being that increasing the
density of coherent points improves the accuracy of surface reconstruction algo-
rithms such as Poisson Surface Reconstruction [16] and thus, propagates visual
improvement through th VV pipeline.

3 Proposed System

3.1 Point Cloud Generation and Upsampling

We use a low-cost VV pipeline similar to the system by [30] to generate the
input clouds for the proposed algorithm. Such pipelines generally maximise the
baseline between cameras in order to reduce the cost of extra hardware while
still providing full coverage of the subject. The camera intrinsics are assumed
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Fig. 2. Proposed pipeline: The input to the algorithm requires a sequence of temporally
independent point clouds along with the corresponding RGB images and calibration
data. At timeframe j, the input cloud is upsampled and projected into the subsequent
frame t + 1. This is done via an edge-aware scene flow generated from the input RGB
images. Expanding on [24], this is performed iteratively across a window of frames
centered about the input frame i.e. we recursively project frames within the given
window toward the center frame. The output consists of a spatio-temporally coherent
merge and averaging system which upsamples the input point clouds and filters against
temporal noise.

to be known from prior calibration while extrinsics can be calculated automati-
cally using sparse feature matching and incremental structure-from-motion [23].
In some cases the cameras may be handheld, whereby more advanced techniques
like CoSLAM [39] can be applied to better produce dynamic poses. The input
sparse clouds are further densified using multi-view stereo. The examples pre-
sented within the context of our system use the sparse point cloud estimation sys-
tem by Berjón et al. [3] and are then further densified by using the unstructured
MVS system of Schönberger et al. [34]. Formally, we define S = {si=1, ..., sm}
as the set of all m video sequences, where si(j), j ∈ {1, ..., J} denotes the jth
frame of a video sequence si ∈ S, with J frames. Then for every frame j, there
will be an estimated point cloud Pj . In a single iteration, Pj is taken as the
input cloud which is upsampled using Edge-Aware Resampling (EAR) [15]. This
initializes the geometry recovery process with a densified point cloud prior which
will be temporally projected into the next time frame j + 1 and geometrically
filtered to ensure both temporal and spatial coherence. With the windowed fil-
tering approach this iteration is performed recursively in such a way that each
frame within the window is iteratively projected toward the center frame via it’s
respective intermediate frames (Fig. 2).
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3.2 Spatio-Temporal Edge-Aware Scene Flow

Accurately projecting geometry from between different timeframes is directly
dependent on the accuracy of the scene flow used to achieve it. In the context
of this paper the scene flow used is actually a dense, pseudo-scene flow which
is generated from multi-view videos as opposed to directly extracting it from
the clouds themselves. This scene flow is calculated as an extension to dense
2D flow, thus, for every sequence si we compute its corresponding scene flow
fi. This view-independent approach ensures that the system is robust to wide
baseline input.

To retain edge-aware accuracy and reduce additive noise we have chosen a
dense optical flow pipeline that guarantees spatio-temporal accuracy:

– Initial dense optical flow is calculated from the RGB input frames using the
Coarse to fine Patch Match (CPM) approach described in [13].

– The dense optical flow is then refined using a spatio-temporal edge aware
filter based on the Domain Transform [18].

The CPM optical flow is used to initialize a spatio-temporal edge aware (STEA)
filter which regularizes the flow across a video sequence, further improving edge-
preservation and noise reduction.

While the STEA can be initialized with most dense optical flow techniques
such as the popular Gunnar-Farnebäck algorithm [9], the proposed system uses
the coarse-to-fine patch match algorithm by [13] as recommended in [33]. Table 1
provides a breakdown of the amount of pertinent geometry recovered via different
optical flow techniques.

Table 1. Investigation by [24] on the effect of STEA filter initialization on geome-
try recovered expressed as % increase in points. Tested on a synthetic ground-truth
sequence. Flow algorithms tested: Coarse-to-Fine Patch Match (CPM) [13], Fast Edge-
Preserving Patch Match (FEPPM) [1], Pyramidial Lukas-Kanade (PyLK) [4] and
Gunnar-Farnebäck (FB) [9].

STEA initialization Area increase (%)

CPM 37.73

FEPPM 34.9

PyLK 34.77

FB 29.7

The STEA filter consists of the following implementation as in [18]. This
implementation further builds upon the Domain Transform [11] extending into
the spatial and temporal domains given the optical flow as the target application:

1. The filter is initialized as in [33], using coarse-to-fine patch match [13]. The
CPM algorithm estimates optical flow as a quasi-dense nearest neighbour field
(NNF) using a subsampled grid.
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2. The edges of the RGB input are then calculated using the Structure Edge
Detection Toolbox [6].

3. Using the calculated edges, the dense optical flow is then interpolated using
Edge-Preserving Interpolation of Correspondences [32].

This dense optical flow field is then regulated by the STEA filter via multiple
spatio-temporal domain iterations to reduce temporal noise. Figure 3 visualizes
the intermediate stages of the flow processing pipeline.

3.3 Scene Flow Point Projection

Given known per-camera intrinsics (Cj1 , ..., Cjm , at timeframe j), the set of scene
flows (fj1 , ..., fjm), and the set of point clouds (Pj , ...,PJ ), the motion of any
given point across a sequence can be estimated. To achieve this, each point is
back-projected Pk ∈ Pj to each 2D flow fi at that specific frame j. We check
the sign of the dot product between the camera pointing vector and the normal
of the point Pk to prune any point projections which may otherwise have been
occluded for the given view. Using the flow, we can predict the position of the
back-projected 2D points pik in sequential frames, p′

ik.
The set of projected 3D points P ′

j , at frame j + 1, is then acquired by trian-
gulating the flow-projected 2D points p′

ik, using the camera parameters of frame
j + 1. This is done by solving a set of overdetermined homogeneous systems in
the form of HP′

k = 0, where P′
k is the estimated 3D point and matrix H is

Fig. 3. From left to right, dense optical flow calculation: For a particular viewpoint, the
input RGB image, (1) nearest neighbour field estimate from CPM, (2) SED detected
edges, (3) interpolated dense STEA output. Conventional colour coding has been used
to illustrate the orientation and intensity of the optical flow vectors. Orientation is
indicated by means of hue while vector magnitude is proportional to the saturation
i.e. negligible motion is represented by white, high-speed motion is shown in highly
saturated color [24].
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defined by the Direct Linear Transformation algorithm [12]. The reprojection
error is minimized using a Gauss-Markov weighted non-linear optimisation [22].

3.4 Windowed Hausdorff Filter

The aforementioned point cloud projection framework can now be used to sup-
port the coherent merging and noise filtering process. For a given window of
width w for frames

{
j(c−w/2)...jc...j(c+w/2)

} ⊂ J where c is the center frame, we
project the point cloud at each frame towards the center frame using the above
method in a recursive manner. In this way structural information is retained
and propagated. However, this also has the effect of accumulating any inherent
noise within this window. For this reason we extend the two-way Hausdorf filter
in [24] with the addition of an energy density term Edens. This density term takes
into account the average voxel density of the merged window of frames which
is essentially the sum of the propagated clouds. Using density as a conditioning
term leverages the temporal inconsistency in that statistically, occupancy due
to noise is far less common than occupancy due to pertinent geometry.

Fig. 4. The windowed merge process. Left: a 5-frame window of input clouds, Middle:
the cumulative merge of the upsampled and projected input clouds. Right: the filtered
merge process visualized with normalized error given by distance of each point to it’s
corresponding match in the input cloud. This error term is then augmented with the
energy terms Edynamic and Edens.

The coherent merged cloud P∗
j+1 is given by the logical definition in Eq. 1

where DP′
j

is the summed result of projecting all point clouds within window w
recursively toward the center frame j.
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Given an ordered array of values DP′
j

such that DP′
j(k)

is the distance from
point Pj(k)′ to its indexed match in Pj+1. We also define DPj+1 as an array of
distances in the direction of Pj+1 to P ′

j . We then define the merged cloud to be
the union of two subsets M ⊂ P ′

j and T ⊂ Pj+1 such that,

M ⊂ P ′
j ∀ P ′

j(k) : DP′
j(k)

< dj , k ∈ {1...j} ,
T ⊂ Pj+1 ∀ Pj+1(k) : DPj+1(k) < dj , k ∈ {1...j} ,

P∗
j+1 = M ∪ T

(1)

By this definition, P∗
j+1 contains only the points in Pj+1 and P ′

j whose dis-
tance to their nearest neighbour in the other point cloud is less than the com-
puted threshold dj . The intention of this design is effectively to remove any large
outliers and incoherent points while encouraging consistent and improved point
density. Figure 4 shows an example of how the coherent merge works.

3.5 Dynamic Motion Energy Term

Due to the distance-based nature of the Hausdorff-based filter, it is often
observed that fast-moving objects are pruned after being projected into the
next frame. This approach to filtering greatly reduces the amount of temporally
inconsistent noise, but simultaneously, it over-filters dynamic objects due to the
lack of spatial overlap between frames. This is especially true for sequences cap-
tured at 30 fps or less, which is often the case for affordable VV setups where
bandwidth and storage are concerned. To address this issue, we supplement the
distance-based threshold term with a dynamic motion energy which is designed
to add bias towards fast-moving objects. This energy term is proportional to
the average motion observed across the scene-flow estimates for a given time-
frame. For faster-moving objects, higher confidence is assigned to clusters of
fast-moving points. Given that P ′

j is a prediction for frame j + 1, we validate
each predicted point by back-projecting P ′

j into the respective scene flow frames
for time j + 1. The flow values for the pixels in each view is then averages to
calculate the motion for a given pixel at that time. As in Sect. 3.3 we again filter
out occluded points using the dot product of the camera pointing vector and the
point normal.

3.6 Spatio-Temporal Density Term

The proposed system offers an expansion to the two-way Hausdorff-based filter
presented in [24] by sampling a window of frames about the current timestamp.
While the two-way filter is robust to temporal noise it isn’t capable of recover-
ing large sections of missing geometry over a spanning timeframe. As illustrated
in Fig. 6, the two-way approach fails to recover much from the sequence where
large patches are missing over a longer time period. To address this, the proposed
system introduces a windowed approach which combines the projected informa-
tion from multiple frames while retaining comparable noise filtering. In order to
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reduce the added noise we propose an additional energy term for the filtering
threshold based on patio-temporal density within the given window. The new
threshold score criteria is then given by:

Eth = d − (Edens + Edynamic) (2)

The Edens term is calculated as follows:

– For a window of width w we iteratively project each frame into the current
timestamp such that a single point cloud object is created consisting of the
points projected from the frame range

{
t(c−w/2)...tc...t(c+w/2)

}

– An octree-based occupancy grid is then constructed on this object where each
leaf is assigned a normalized density score. This score is the Edens term for
any point given its index within the occupancy grid.

Figure 4 illustrates this process for any given window. The size of this window
is variable but is limited by practical limitations of computation time and the
trade-off of adding multiple sources of noise. For our purposes we concluded that
a window size of 5 was within practical time constraints while still providing good
results. As with any filtering or averaging algorithm, there is an inherent risk of
over-smoothing data and thus, such decisions may differ for various sequences
depending on the degree of dynamic motion.

4 Results

In Fig. 5 we demonstrate a side-by-side comparison of the process results vs
unprocessed input for two challenging yet conventional scenarios. We evaluate
the system on a number of sequences captured outdoors with as little as 6 to
12 handheld devices (i.e. smartphones, tablets etc.) as well as a controlled green
screen environment comprised of 12 high-end, rigidly mounted cameras (6 4K
resolution, 6 Full HD). A ground-truth comparison is also presented by com-
paring reconstruction results against a known synthetic model within a virtual
environment with rendered cameras.

4.1 Outdoor Handheld Camera Sequences

Shooting outdoors with heterogenous handheld devices can present a number of
challenging factors including: non-uniform dynamic backgrounds, increased mar-
gin of error for intrinsics and extrinsics calculations, instability of automatic fore-
ground segmentation methods and more. The cumulative effect of these factors
results in temporal inconsistencies with the reconstructed point cloud sequence
as well as the addition of structured noise and omission of pertinent geometry.
Figure 5 (left model) shows the difference between using framewise reconstruc-
tion (a) and the proposed system (b). A significant portion of structured noise
has been removed whilst also managing to fill-in gaps in the subject.
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Fig. 5. An example of the proposed upsampling and filtering system. Pictured left:
a sequence captured outdoors with handheld devices. Pictured right: a sequence cap-
tured in a low-cost controlled studio environment with fast-moving objects. For both
sequences, (a) corresponds to the input cloud prior to filtering while (b) represents the
upsampled and filtered result [24].

To further demonstrate the impact of our system targeting volumetric recon-
struction, we present the effect of applying screened poisson surface reconstruc-
tion (PSR) [16] to the input point cloud. In general, the direct application of PSR
creates a fully closed surface which usually creates bulging or “inflated-looking”
surface meshes. Instead we use the input cloud to prune outlying faces from
the PSR mesh such that the output surface mesh more accurately represents
the captured data. Thus, in Fig. 6 the gaps in the input data can be visualized
clearly. This figure also shows the appreciable increase in pertinent surface area
after spatio-temporal upsampling.

4.2 Indoor Studio Sequences

In general, sequences shot in controlled studio environments exhibit far less
temporal noise and structural inconsistencies in comparison to “in-the-wild”
dynamic outdoor shots. To further test our system we introduce an extra degree
of challenge in the form of multiple, fast-moving objects while still using no more
than 12 cameras for full, 360-degree coverage. This introduces further difficulty
due to occlusions caused when the ball passes in front of performer as well as
testing the limits of the flow-based projection system. In spite of these challenges,
the proposed system is still able to filter a lot of the noise generated and can
recover a modest amount of missing geometry, Fig. 5, (right model).
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Fig. 6. A non-sequential set of frames from an outdoor VV shoot using handheld
cameras. (Top): The RGB input to the system. (Middle): The result of applying poisson
reconstruction to the unprocessed, temporally incoherent point clouds. (Bottom): The
same poisson reconstruction method applied to the upsampled and filtered output of
the proposed system [24].

4.3 Synthetic Data Sequences

As a baseline for ground-truth quantitative benchmarking, we evaluate our sys-
tem using a synthetic virtual scenario. This synthetic data consists of a short
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Fig. 7. A qualitative comparison of surface areas recovered from PSR meshing of
point clouds from comparable systems. All meshes were created using the same octree
depth for PSR and same distance threshold for outlier removal. From left to right:
SIFT+PMVS [10,21], RPS [30], RPS+PU-Net [37], RPS+EAR [15], Proposed system
applied in two-frame, forward direction only [24], the proposed system with windowed
temporal filter centered on a window of 5 frames.

sequence featuring a human model performing a simple animated dance within a
realistic environment. 12 virtual cameras were evenly spaced around a 180◦ arc
centered about the animated character model. The images rendered from these
virtual cameras provided the input to the VV systems for testing. Using this
data we compare our results with those of temporally incoherent VV systems
by applying PSR to the output point clouds and using the Hausdroff distance
as an error metric. This is shown in Fig. 9.

We compare our results against similar framewise point cloud reconstruc-
tion systems, SIFT+PMVS [10] and RPS [30] as well as some state of the art
upsampling algorithms for which we provide the method of RPS as input; PU-
Net [37] and the Edge-Aware Resampling [15] method. Benchmarking against
RPS+EAR also provides a form of ablation study for the effect of the proposed
method as this is the approach used to initialize the system.

The proposed system demonstrates an overall improvement in quality in
Table 2 yet the synthetic dataset lacks the noise which would be inherent to
data captured in a real-world scenario. We would expect further improvements
in such a scenario where the input error for the framewise reconstruction systems
would be higher. Figure 7 qualitatively shows the effect of applying the proposed
system to much noisier input data.

4.4 Flow Initialization

While practically any dense optical flow approach can be used to initialize
the STEA filter in Sect. 3.2, improvements can be achieved by application-
appropriate initialization. We show the results of initializing the STEA filter
with CPM against other dense-flow alternatives in Table 1. The advanced edge-
preservation of CPM results in it out-performing the alternatives but comparable
results can achieved using GPU-based alternatives which may somewhat trade
off accuracy for speed [1] (Fig. 8).
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Fig. 8. An animated character model within a realistic virtual environment to generate
synthetic test data [24].

Fig. 9. Ground-truth evaluation of the proposed system against the virtual reference
model using Hausdorff distance as the error metric. The left model shows a frame gener-
ated using framewise reconstruction [30], the middle model is the forward-projection,
two frame filter [24], while the right shows the proposed systems [24] for a filtering
window of 5 frames.

5 Limitations and Future Work

Due to the temporal nature of the algorithm, it is not possible to directly par-
allelize the proposed system as the most accurate scene flow is generated by
providing the full length of the video sequence. Yet, if parallelism is a neces-
sity, a compromise can be achieved in the form of a keyframe-based system
whereby the input timeline is divided in reasonably-sized portions. Future work
may employ some automatic keyframe detection which could maximise inter-
keyframe similarity.
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Table 2. Synthetic baseline comparison between the proposed method and similar state
of the art approaches. Figures represent the Hausdorff distance metric with respect to
the bounding box diagonal of the ground truth (%) [24].

Method Mean error (%) RMS error (%)

SIFT+PMVS 6.18 8.09

RPS 2.17 3.27

RPS + PU-Net 2.44 3.50

RPS + EAR 2.40 3.64

Moynihan et al. 1.78 2.72

Proposed 1.56 2.30

6 Conclusions

As the barrier to entry for VV content creation lowers, we still see a large dispar-
ity between content from affordable systems and that from high-budget studios.
Sparse and dynamic, in-the-wild studio setups will always have to overcome
the characteristic spatio-temporal errors of systems which continue to lower the
cost to entry while maintaining creative freedom. These limitations are difficult
to overcome but we have demonstrated that improvements are achievable by
extending upsampling and filtering techniques into the spatio-temporal domain.

Our approach can efficiently filter temporally incoherent noise without over-
correcting for otherwise pertinent geometry. We also demonstrate the ability to
perform a framewise upsampling which not only creates new coherent geometry
but also propagates existing, spatially-coherent geometry across a variable frame
window. This expansion to [24] shows improved results over the framewise, two-
way projection and filter.

The most appreciable results emerge for the most challenging sequences.
Handheld, outdoor VV captures tend to be the most error prone and thus stand
to benefit the most from the proposed upsampling and filtering method as can be
seen in the qualitative results presented. However, despite being less susceptible
to error our qualitative analysis via synthetic ground truth data shows a marked
improvement over the framewise approach. We also demonstrate an improvement
over the work presented in [24] with the addition of a variable temporal window
that further explores the persistence of coherent geometry against noise.

Overall we present an efficient method for improving the quality of greatly
constrained VV capture setups in order to meet the growing demand for afford-
able virtual and augmented reality content creation.
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